
Large Language Models for
Legal Epidemiology

October 7, 2024

https://github.com/jsqr/muniscope 1

https://github.com/jsqr/muniscope


Agenda

1. Recap

2. Large context models

3. Automating configuration for each jurisdiction

4. Testing and quantitative evaluation

5. Infrastructure for collaboration

https://github.com/jsqr/muniscope 2

https://github.com/jsqr/muniscope


Guiding principles

1. Ground all results with citations and retrieved source excerpts

2. Find all relevant sources!

3. Keep humans in the loop – design, verify, solve problems

4. To extent possible, minimize complexity and external dependencies

https://github.com/jsqr/muniscope 3

https://github.com/jsqr/muniscope


Prototype: overview

https://github.com/jsqr/muniscope 4

https://github.com/jsqr/muniscope


Large context windows ('Is RAG dead?')

Anthropic (Claude 3 family) and Google (Gemini 1.5 family) provide
models with context windows greater than 1M tokens (about
700,000 words)

This is comparable to the length of many municipal codes
(especially if you leave out obviously irrelevant sections)

Further, prompt cachining (now offered by Anthropic, Google, and
OpenAI) makes this more affordable

So can you just upload the code and ask the model your question?

https://github.com/jsqr/muniscope 5

https://github.com/jsqr/muniscope


Pricing

Pricing has come down a lot

Gemini 1.5 Pro is $2.50/1M tokens, and $4.50/1M/h context
caching

Likely cost is $10s of dollars per jurisdiction for a flagship model

Economy models (e.g., Gemini 1.5 Flash) cost significantly less, and
still do well on many retrieval tasks.

https://github.com/jsqr/muniscope 6

https://github.com/jsqr/muniscope


Pros and cons

Pro Minimal programming and setup needed

Pro Anecdotally, seems to do well at retrieval and automated
coding tasks

Pro Capabilities are matched to legal epi use case (limited set of
million-word documents, small suite of standardized queries)

Con No simple way to get specific cited text that hasn't been
processed by LLM, so more work needed to verify outputs
(searching though code for citations, etc.)

Con Still greater cost, at least in LLM service fees

https://github.com/jsqr/muniscope 7

https://github.com/jsqr/muniscope


Parsing

Want to segment cleanly
according to code hierarchy

Each jurisdiction uses a
different system

Off-the-shelf tools don't
really work

https://github.com/jsqr/muniscope 8

https://github.com/jsqr/muniscope


Parsing: configuration using original approach

Write and test regular expressions for the headings used in the code:

chicago = Jurisdiction(
    name="Chicago",
    hierarchy={
        "title":   r"TITLE \d+",
        "chapter": r"CHAPTER \d+-\d+",
        "article": r"ARTICLE [IVX]+\\.",
        "section": r"\d+-\d+-\d+",
    },
    source_local="../data/chicago/chicago.txt",
)
chicago_tree = chicago.parse()

https://github.com/jsqr/muniscope 9

https://github.com/jsqr/muniscope


Parsing: current approach using cut & paste

An analyst supplies a few examples at each level (no coding or writing
regular expressions):

    H1: "TITLE 1\nGENERAL PROVISION\n"
        "TITLE 2\nCITY GOVERNMENT AND ADMINISTRATION\n"
        "TITLE 3\nREVENUE AND FINANCE\n"
    
    H2: "CHAPTER 1-4\nCODE ADOPTION - ORGANIZATION\n"
        "CHAPTER 1-8\nCITY SEAL AND FLAG\n"
        "CHAPTER 1-12\nCITY EMBLEMS\n"
    
    H3: "1-4-010 Municipal Code of Chicago adopted.\n"
        "2-1-020 Code to be kept up-to-date.\n"
        "3-4-030 Official copy on file.\n"                                      .

https://github.com/jsqr/muniscope 10

https://github.com/jsqr/muniscope


Parsing: automatic configuration

An LLM call creates patterns capturing these headings

The patterns are incorporated into a formal grammar for the
document outline using a standard parser-generator (Lark, a
modern version of lex)

The generated parser segments the document into a tree structure
for subsequent processing

It would be nice to have an LLM handle the first step of extracting
example headings, since this seems pretty easy; but I haven't been
able to get this to work reliably

https://github.com/jsqr/muniscope 11

https://github.com/jsqr/muniscope


Testing and quantitative evaluation

Moving beyond prototype / tinkering phase

Make it possible for other people to go through workflow without
programming

Evaluate against hand-coded examples to assess performance

https://github.com/jsqr/muniscope 12

https://github.com/jsqr/muniscope


Infrastructure for collaboration

Code on Github (moving from local machine), MIT license

Postgres server running from high-tech data center (broom closet),
securely available remotely by VPN

https://github.com/jsqr/muniscope 13

https://github.com/jsqr/muniscope


Workflow

Data reduction workflow should consist of:

1. Syncing local working environment with Github

2. Copying a municipal code to a data/city  subdirectory

3. Running a script to clean and convert the code to a single plain text
file data/city/code.txt

4. Making a copy of template.ipynb  to city.ipynb

5. Going through the notebook section by section, with state and
outputs saved to the Postgres database along the way.

https://github.com/jsqr/muniscope 14

https://github.com/jsqr/muniscope

